...
EgyptSearch Forums Post New Topic  Post A Reply
my profile | directory login | register | search | faq | forum home

  next oldest topic   next newest topic
» EgyptSearch Forums » Deshret » origin and migration patterns of the indigenous people of the Canary Islands

 - UBBFriend: Email this page to someone!    
Author Topic: origin and migration patterns of the indigenous people of the Canary Islands
the lioness,
Member
Member # 17353

Rate Member
Icon 1 posted      Profile for the lioness,     Send New Private Message       Edit/Delete Post   Reply With Quote 
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0209125

Mitogenomes illuminate the origin and migration patterns of the indigenous people of the Canary Islands

Rosa Fregelet al

PLOS

Published: March 20, 2019
https://doi.org/10.1371/journal.pone.0209125


Abstract

The Canary Islands’ indigenous people have been the subject of substantial archaeological, anthropological, linguistic and genetic research pointing to a most probable North African Berber source. However, neither agreement about the exact point of origin nor a model for the indigenous colonization of the islands has been established. To shed light on these questions, we analyzed 48 ancient mitogenomes from 25 archaeological sites from the seven main islands. Most lineages observed in the ancient samples have a Mediterranean distribution, and belong to lineages associated with the Neolithic expansion in the Near East and Europe (T2c, J2a, X3a…). This phylogeographic analysis of Canarian ancient mitogenomes, the first of its kind, shows that some lineages are restricted to Central North Africa (H1cf, J2a2d and T2c1d3), while others have a wider distribution, including both West and Central North Africa, and, in some cases, Europe and the Near East (U6a1a1, U6a7a1, U6b, X3a, U6c1). In addition, we identify four new Canarian-specific lineages (H1e1a9, H4a1e, J2a2d1a and L3b1a12) whose coalescence dates correlate with the estimated time for the colonization of the islands (1st millennia CE). Additionally, we observe an asymmetrical distribution of mtDNA haplogroups in the ancient population, with certain haplogroups appearing more frequently in the islands closer to the continent. This reinforces results based on modern mtDNA and Y-chromosome data, and archaeological evidence suggesting the existence of two distinct migrations. Comparisons between insular populations show that some populations had high genetic diversity, while others were probably affected by genetic drift and/or bottlenecks. In spite of observing interinsular differences in the survival of indigenous lineages, modern populations, with the sole exception of La Gomera, are homogenous across the islands, supporting the theory of extensive human mobility after the European conquest.


Discussion

Our mtDNA results on the indigenous people of the Canary Islands shed light on the prehistory of North Africa. Our data are in agreement with recent aDNA data from Morocco [73] and further evidence of a complex pattern of Mediterranean migrations in North Africa. Archaeological records in the Maghreb support this result, and also suggest further European intrusions during the Chalcolithic and Bronze Age eras [87,88]. Additionally, Phoenicians, Carthaginians and Romans arrived in the North African region in historical times [89–92]. The presence of haplogroups of Mediterranean distribution in the indigenous people of the Canaries demonstrates the impact of these prehistoric and historical migrations in the Berbers and that they were already an admixed population at the time of the indigenous colonization of the islands [93].

In our phylogeographic analysis of complete mtDNA sequences from the Canarian indigenous population, we found lineages that are only observed in Central North Africa and the Canary Islands (H1cf, J2a2d and T2c1d3), while others have a wider distribution including both West and Central North Africa, and, in some cases, Europe and the Near East (U6a1a1, U6a7a1, U6b, X3a, U6c1). These results point to a complex scenario, where different migration waves from a dynamic and evolving North African population reached the islands over time. Every island experienced their own evolutionary path, determined by the environmental conditions and limitations of insularity. Those islands with the capability of sustaining large populations retained variability, while others with more restricted means (La Gomera and probably El Hierro) had to develop cultural practices to avoid inbreeding, like mandatory exogamic practices [79,94].

Although the North African Berber origin is the most widely accepted hypothesis, other lines of research have proposed that certain funerary practices and religious beliefs observed in the indigenous population of the Canary Islands could be linked to Punic-Phoenician influence [95], thus proposing the colonization of the Canary Islands as the result of Phoenicians expanding their control to the Atlantic Ocean. Based on the limits of the territorial occupation of the Atlantic West Africa by Phoenicians, Carthaginians and Romans, most researchers consider it unlikely that there was a political occupation or economic exploitation of the archipelago [96–98]. However, the islands were not unknown to Mediterranean cultures, and Romans possessed the seafaring skills needed to travel to the islands [22]. Some authors think Phoenicians also had the navigational technology required to reach the Canary Islands [99,100], although this idea has been challenged [101]. The first Phoenician aDNA sample published was a complete mtDNA sequence of a child from Carthage dated to the 6th century BC [86]. This Carthaginian sample was classified within U5b2c1 haplogroup. This result is interesting, given that U5 was more frequent in the indigenous population of the eastern islands, including the island of Lanzarote, where a Punic-Phoenician influence has been proposed. As U5 haplogroup was not uncommon in Neolithic European samples, and its presence in North Africa might be due to prehistoric migrations, an alterative explanation would be that haplogroup U5 was incorporated into the Berber mtDNA pool before the Carthaginians were established in Tunisia. Recently, Matisoo-Smith et al. [102] published thirteen complete mitogenomes from Punic-Phoenician samples from Lebanon and Sardinia. The only haplogroups in common with the indigenous population of the Canary Islands are H3 and H1e1a, although, in this case, the Phoenician H1e1a sample is classified within the sub-lineage H1e1a10. The lack of overlap between the mtDNA composition of Phoenicians and the Canarian indigenous people disagrees with either a Punic-Phoenician origin for the ancient islanders or sustained contact between the two populations.

Previous genetic analyses of the modern Canarian population detected an asymmetrical distribution of maternal and paternal lineages in the archipelago [31,35]. Our aDNA results confirm the existence of asymmetrical distribution of mtDNA haplogroups in pre-colonial times, with the presence of haplogroups H1e1a9, H4a1e, L3b1a12 and U6c1 only in the eastern islands. However, it is worth mentioning that La Palma, the island with the most anthropological evidence of two migrations waves, does not show any of these lineages. If we consider the presence of H1e1a9, H4a1e, L3b1a12 and U6c1 haplogroups to be the result of further population movements from North Africa to the eastern islands, we could approximate the date based on radiocarbon dates of the sites where the sample was taken. Most sites where these lineages have been observed have radiocarbon dates placed around the 13th century, and all except one are from after the 10th century. The only site with an older date is Guayadeque; however, we have to take into account that this is a large site, with evidence of human occupation extending until the 14th centuries AD [103], and the dating was not performed directly on the analyzed sample.

Archaeological data has evidenced significant changes in the productive strategies of some islands around the 11th - 12th centuries [12,76,104–106]. In fact, recent data indicates probable population growth in Gran Canaria at that time, suggesting the appearance of new settlements associated with an exploitation model that intensified the use of marine resources, the increase in the size of settlements linked to agricultural nuclei, and changes in the production of some craftsmanships [12,107,108]. These changes have been interpreted as part of an endogenous process, as it has been determined that this population growth involved neither significant changes in the structure of human settlements or burials, nor introduced differences in land management or the types of domestic species that were exploited. However, it is also possible to explain those changes as the result of the arrival of new migrants to the island of Gran Canaria. Although it is still under study, there is evidence for transformations in the configuration of some settlements in Lanzarote, between the 8th and 13th centuries [109]. Again, these modifications could be reflecting changes in the conception of domestic space due to an endogenous process, or associated with the arrival of new colonizers. Archaeological information from Fuerteventura is not abundant enough to determine population size changes that could be related to the arrival of new migrants. Nevertheless, it is clear from the archaeological record that Fuerteventura and Lanzarote maintained frequent contact and shared both cultural and economic elements [76,110]. Future paleogenomic efforts to obtain more complete mtDNA genomes and additional genome-wide data from all seven islands, in combination with proper archaeological contextualization of the genetic data and detailed radiocarbon dating, will be essential for improving our knowledge of the origins and evolution of the indigenous population of the Canary Islands.

Posts: 42919 | From: , | Registered: Jan 2010  |  IP: Logged | Report this post to a Moderator
DD'eDeN
Member
Member # 21966

Rate Member
Icon 1 posted      Profile for DD'eDeN     Send New Private Message       Edit/Delete Post   Reply With Quote 
The X3 sequences are closest to Druze and a Tunisian. Several Moroccan ones belong to the same branch but are more distant.

The A2 Amerindian one is nearly identical to one from Puerto Rico & one from Delaware.

(Note from Gisele Horvat, MtDNA researcher)

Posts: 2021 | From: Miami | Registered: Aug 2014  |  IP: Logged | Report this post to a Moderator
   

Quick Reply
Message:

HTML is not enabled.
UBB Code™ is enabled.

Instant Graemlins
   


Post New Topic  Post A Reply Close Topic   Feature Topic   Move Topic   Delete Topic next oldest topic   next newest topic
 - Printer-friendly view of this topic
Hop To:


Contact Us | EgyptSearch!

(c) 2015 EgyptSearch.com

Powered by UBB.classic™ 6.7.3